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SUMMARY 

Least square methods have been frequently used to solve fluid mechanics problems. Their specific 
usefulness is emphasized for the solution of a first-order conservation equation. On the one hand, the 
least square formulation embeds the first-order problem into equivalent second-order problem, better 
adapted to discretization techniques due to symmetry and positive-definiteness of the associated matrix. 
On the other hand, the introduction of a least square functional is convenient for finite element 
applications. 

This approach is applied to the model problem of the conservation of mass (the unknown is the 
density p )  in a nozzle with a specified velocity field (u, v), possibly including jumps along lines 
simulating shock waves. This represent a preliminary study towards the solution of the steady Euler 
equations. 

A finite difference and a finite element method are presented. The choice of the finite difference 
scheme and of a continuous finite element representation for the groups of variables (pu, p v )  is 
discussed in terms of conservation of mass flux. Results obtained with both methods are compared in 
two numerical tests with the same mesh system. 
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INTRODUCTION 

The solution by relaxation of the first-order equations or systems of conservation laws for 
subsonic and transonic flow of a perfect fluid, such as the steady Euler equations, is hindered 
by the difficult problem of the choice of the numerical scheme. This choice must ensure a 
proper domain of dependence of elliptic or hyperbolic type at each point, and a well- 
conditioned matrix for the associated algebraic system of difference equations thus allowing 
use of efficient inversion algorithms. 

Least square methods have frequently been used to solve fluid mechanics problems (see, 
for example the excellent review by Eason'). Specifically, in the case of mixed-type 
equations, least square methods have proved very ~ s e f u l . ~ , ~  On the one hand, the least 
square formulation embeds the first-order problem into an equivalent second-order problem, 
better adapted to discretization techniques due to symmetry and positive-definiteness of the 
associated matrix. On the other hand, the introduction of a least square functional is 
convenient for finite element applications. 

This approach is applied to the model problem of the conservation of mass (the unknown 

0271-2091/82/020209-ll$Ol.lO 
0 1982 by John Wiley & Sons, Ltd. 

Received 9 October 1981 



210 J J CHATTOT, J GUIIJ-ROUX AND J LAMINE 

is the density p )  in a nozzle with a specified velocity field (u, v), possibly including jumps 
along lines simulating shock waves. This represents a preliminary study towards the solution 
of the steady Euler equations. 

In the first part, the model problem and the associated least square formulation are 
presented. 

A finite difference method is described in the second part. The second-order problem and 
the boundary conditions are written in a geometrically-oriented curvilinear co-ordinate 
system. The finite difference scheme is presented. 

The third part concerns the finite element method. The choice of a continuous finite 
element for the groups of variables (pu, pv) is discussed in terms of the conservation of mass 
flux. 

In the last part, results of numerical tests are presented. They are concerned with a 
continuous velocity field and a discontinuous velocity field simulating a shock wave in the 
diverging part of the nozzle. The results of both methods are compared for the same mesh 
system. The latter case has also been solved by a pseudo-unsteady finite difference method. 
The relevance of the finite element approximation, illustrated by a one-dimensional normal 
shock problem, is contrasted with an approximation where, instead of the group (pu) ,  each 
variable, p and u, is represented separately by a continuous function. 

1. FIRST-ORDER PROBLEM AND ASSOCIATED LEAST 
SQUARE FORMULATION 

The nozzle flow domain is represented by an open set R of R2. R is simply-connected, 
bounded with a piecewise regular boundary r. The velocity field q = (u, v) is given on fi and 
satisfies the following hypothesis (Figure 1): 

(i) q is regular, except on a finite number of regular curves C, which divide R into disjoint 
subsets 0, and simulate shock waves; 

(ii) the velocity modulus is strictly positive (no stagnation point in the flow field); 
(iii) the streamlines do not coalesce and are not tangent to the curves C,. 

Let p be the density. p must satisfy the mass conservation equation: 

apu apv 
a y  

Ap = div pq = -+- = 0 in R. 

‘I-3 

Figure 1. Domain il 
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Equation (1) is hyperbolic. The characteristic curves are the streamlines of the velocity field 
q. A well-posed problem consists of specifying p on the part of the boundary of R where the 
flow is entering (upstream boundary). 

Let 
f, = {(x, y)  E I‘ 1 q . n < 0) (upstream boundary) 
f, = {(x, y )  E f 1 q . n> 0)  (downstream boundary) 
r3 = {(x, y)  E r 1 q . n = 0) (nozzle walls) 

where n is the external unit normal on l7. Hence the upstream condition can be written: 

p q . n = g  onr, .  (2)  

(a. n,) = 0 on C, ( 3 )  

On the curves C,, p must satisfy a condition of ‘Rankine-Hugoniot’ type: 

where (a) = a2- a, represents the jump of a oriented by n,, the unit normal on 2,. Note that 
( 3 )  is the expression of (1) in the sense of distributions. 

The first-order problem can be summarized as: 

Theorem: With the hypothesis (i), (ii) and (iii), the first-order problem (l), (2) ( 3 )  
has a unique solution which is C’(R,) on each subset R,. 

This result is a consequence of the Cauchy-Kovaleska theorems-the boundary condition on 
each R, is obtained either from (2) or (3 ) .  The full, detailed proof can be found in Refer- 
ence 6. 

Let L2(R) be the set of square-integrable functions in 0. The least square formulation 
associated with the first order problem is: 

Find p which satisfies (2) and minimizes 

I(T) = 4 ldiv TqlLz(a) = (div Tq)2 dx dy. b 
We introduce the space of functions 

vq(n) = {T E L2(R) I div T q  E L2(0)) 
V,(fk) is a Hilbert space for the norm of the graph: 

ll~ll2v,(a) = l~I:z(n) + ldiv TqI&(a). 

The regularity of q assumes that Vq(R) can be identified to a subspace of Hdlv(R)= 
{p E L2(fk)’ I div p E L2(R)) such that we can define a trace operator from Vq(fi) to H-”’(T) 
by 

7 - YdivTq 

where ydiv is the trace operator on Hdiv(i2) (cf. Reference 8): 

Ydiv P = P * n- 

This now gives a meaning to the functional I and the relations (2) and (3) .  
Thus the least square problem becomes: 

I ( p )  = Inf I ( p ’ )  = Inf ${div p’q)’ dx dy 
P ‘ E v , ( a )  P’€vl(a) J n 

(4) 
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where V,(n) = {p’ E Vq(n) I p’q . n = g on r1}. 
formulation of (4) is used and assumes the following form: 

From the discretization point of view, in the finite element method the variational 

c 

I(p).T= Ja divpq.divTqdxdy=O, VTEVq(iZ)/Tq.n=O on rl. 

In the finite difference method, the interpretation of ( 5 )  is used which, upon integration by 
parts, gives 

q . grad (div pq) = 0 in 0 (6.1) 

div pq = 0 on r2 and r3 (6.2) 

p q . n = g  o n r ,  (6.3) 
Other, and more detailed, results are given in Reference 6. 

2. FINITE DIFFERENCE METHOD 

Equation (6.1) is written in a geometrically-oriented curvilinear co-ordinate system. In 
quasi-conservative form (the metric coefficients are brought in front of the derivatives) it 
becomes: 

aga2pu aq  a t  aqa2pu aga2pv u--+ u-+v- + V - - 7 + U - y  
ax at2 I ax ax ax aq a y  a t  

U=q.grad 6, V = q  g a d  q are the contravariant components of velocity. The metric 

coefficients - a t  , . . . , - . . . are evaluated n~merical ly .~ 
ax ax2 

On IT2 and r3 the condition (6.2) is transformed as: 

Equation (7) is discretized at each interior point of a rectangular (t, q) grid with indices ( i ,  j ) ,  
using a conservative, second-order accurate centred finite difference scheme: 

r+u)i,i = (p~) i+ l ,  j -(Pu)i-l, j 

2 A t 2  

(p~)z+l ,  j + l  -(pu)i+l, j-1 -(PU)i-l, i + l  + (PU)i-l, j-1 

4 A t b  
with corresponding formulae for the other terms.The discretization of equation (7) yields a 
nine-point scheme everywhere. 
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On the boundary r2 and r3, the first-order equation (8) is discretized with a first-order 
accurate upwind scheme. It can be easily verified that in order to obtain a non-singular 
algebraic equation for the value pi,j7 the bias must be taken opposite to the flow direction. 
For example, in the situation sketched on Figure 2: 

with corresponding formulae for the other terms. 
A line relaxation method is employed to solve the algebraic system of equations. The 

relaxation factor is set close to one. Convergence is obtained in about 500 iterations on a 
21 x 11 mesh system, which is comparable to what would be required to solve an elliptic 
problem with Neumann boundary conditions. 

3. FINITE ELEMENT METHOD 

The finite element discretization could be applied to the least square problem (4) as well as 
to the variational formulation (5). In both cases one must solve a linear system: 

M c = b  
0 

where M is an N X N matrix and p and b are N-dimensional vectors. 
Let T h  be a finite element mesh with quadrangles K :  @K a finite set of degrees of freedom 

defined on each element K :  QK a space of polynomials defined on the element K and of 
degree less than or equal to k in each direction ( k  = 1 in this application). 

Let v h  be the set of continuous functions defined on 0, the restriction of which on each 
element K of Th is in QK.  A function of v h  is uniquely defined by its values on QK. v h  is a 
finite dimensional space. We shall denote by {+i}i=l, a base of v h .  

n / h  = v h  x v h  is thus and internal and converging approximation of Hdiv(SZ).' 

Choice of the approximation 

Let (@)h and ( p ) h  be approximations of pu and pu respectively in v h  

-t: 
Figure 2. Discretization of equation (8) for U Z O ,  V2.0 
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Let vqh ={Oh such that p h q h  = ((pu)h, (pu)h) E vh} .  Let us suppose that the intersection of the 
nodes of T h  with the curves 2, is empty. In this case one can write: 

(PU), = PIUl 

b v ) ,  = ptv,. 

In the discrete sense p h  is the vector 6 ={P,},=~, N. Replacing V, by v,h in (4) and (5 )  we get 
(i) the discrete least square formulation: 

Find pt, in Vlh such that 

where Vlh = { ~ L E  V,, 

(ii) the discrete variational formulation: 
Find p h  in Vlh such that 

‘t lThEVqh I(Tq)h.n=o on rlh 

(12) and (13) yield the following algebraic system: 

I h  (PA) =I ‘G’MG ’ 
IL(ph) ‘Th = ‘CM? 

where the coefficients m, of M are: 

m,, = hh (uE*+v,%) ax 
a y  

Remarks on the approximation 

The vector pq has been approximated by continuous functions. This is justified by an 
argument that D(fi)XD(fi) is dense in Hdiv(fi) (cf. Reference 8).  It is not possible to 
construct an internal approximation of the space V,(fi) of p with continuous functions in the 
case of a discontinuous velocity field q. 

Indeed, if we choose p, u and v separately in vh we cannot find a solution which verifies 

with 

In other words, the least square solution is not a solution of the first-order system and the 
mass conservation is not ensured; this will be illustrated in the last part by a one-dimensional 
normal shock problem. 
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4. NUMERICAL TESTS 

The domain fl is bounded by the entrance and exit sections located at x=-1 ,  +1 
respectively, the axis of symmetry y = 0 and the wall of the parabolic nozzle of equation 
y = 3 -0.2(1 -x2). The 21 x 11 mesh system for the methods of finite differences and finite 
elements is presented in Figure 3 .  It is composed of 200 elements which correspond to 
N = 220 unknowns. 

In the finite element procedure, the Q, functions are integrated on each quadrangle by a 
four-point Gaussian quadrature formula. 

The numerical tests concern a continuous, divergence-free velocity field q, and a discon- 
tinuous velicity field q2, simulating the presence of a shock wave in the diverging part of the 
nozzle. 

The velocity field qI is obtained by superposition of the velocity fields induced by 
two-point vortices distributed symmetrically with respect to the axis y = 0 and having 
opposite strength: 

The upstream condition (2) is 

p I = l  o n r ,  

Thus the exact continuous solution is p = 1 V(x, y)  E Q. The results obtained by the finite 
difference and finite element methods are presented on Figures 4 and 5. It can be seen that 
the accuracy is good (O(h2)) except for the finite difference method on the lines j = 1, j = 11 
where the scheme is only first order accurate O(h).  

Figure 3. Mesh system 
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error 
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0 

Figure 4. Continuous divergence-free velocity field finite difference method 

0.9 95. 
i X  

-0.005 
-1 '0 

Figure 5 .  Continuous divergence-free velocity field finite element method 

The velocity field q2 is defined as: 

. I  

with 

x,h,,k=O'823S32-O'14y2 (Figure 3)  
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Figure 6 .  Discontinuous velocity field finite difference method 
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Figure 7. Discontinuous velocity field finite element method 
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Figure 8. Density on  the nozzle plane of symmetry. Comparisons between finite difference and finite element 
methods (V =pseudo unsteady finite difference method 26 x 11;  + = 21 x 11 finite element method; 0 = 21 X 11 finite 

difference method) 

The upstream condition (2) is 

pl(y) = 1 - 0 - 2 ~ ~  on r,. 
Again the finite element result (Figure 7) yields a more accurate answer than the finite 

difference counterpart (Figure 6) when one considers the ratio of the exit to entrance flow 
rate. A loss of mass flux of 3 per cent is found in the finite difference solution as opposed to 
0.1 per cent in the finite element solution. 

In Figure 8 we present the density on the nozzle plane of symmetry computed by the finite 
difference method, the finite element method and a pseudo-unsteady second-order accurate 
finite difference method.' The latter and finite element methods are in excellent agreement 
although a different (slightly finer) mesh has been employed in the pseudo-unsteady method. 

The final test case concerns a one-dimensional normal shock problem. It can be simulated 
by a horizontal, piecewise-constant velocity field in a channel with parallel walls. The 
number of elements in the x-direction is 10 and corresponds to a discretization step h = 0.2. 
The results are presented in Table I for various values of the jump in u for the conservative 
(1 1) and non-conservative (14) finite element approximations. They illustrate the remark 
made earlier. 
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c P, U L 4 ,  

JUMP Iteration flux 
(U) count Error c o s t  error 

0.00 1 10 ’ 10P 0 

Relative 

0.20 16 8 . 1 0 . ~  1 .2 .10-~  0.004 
0.40 18 9 .  lo-’ 3.0. 0.005 
0.60 20 8 .  10 3.5 .  lo-’ 0.005 
0.80 21 8 .  lor4 3.2. lo-’ 0.005 
1.00 21 9 .  5.6. 10-‘ 0-006 
1.20 22 8 .10  5.6.10 0.005 
1.40 22 9 .  7 .5 .10-~  0.006 
1.60 22 9 . 1 0 - ~  1.1. 0.007 
1.80 23 8 .  lo-“ 1.0. 0.006 
2.00 23 8 .  10 1.1. 0.007 
4.00 24 8 . 1 0 - ~  3 .3 .10-~  0.001 
6.00 24 9 . 1 0 - ~  6.4. 
8.00 25 8 .  1.0. lo-?  

10.0 25 8 .  3.8. lo-’ 0.002 

1, Pr u,4,4, 
Relative 

It. flux 
count Error cost error 

1 lo-’ 0 
16 8 .  1.0.  0.007 
18 8 .  1W4 1.5. lo-’ 0.030 
18 9 .  7.6. lo-’ 0.100 
18 8 .  2.1. lo-‘ 0.299 
17 9 .  4.7. 10-1 0.360 
16 9 .  3.5. 30.’ 0.50 
15 9 .  1.36 1-18 
1s 8 .  2.00 1.02 
14 8 .  2.77 1.3 
14 8 .10  3.64 3.52 
14 8 .10  17.51 4 
14 8.10-4 39.60 6 
14 9 .  69.67 8 
14 9 .  100.0 10-3 

In conclusion, it has been shown that the least square formulation can prove very useful 
for the numerical solution of first-order conservation equations. It can be employed with the 
finite difference and finite element types of discretization. A proper scheme consists in 
approximating the group of variables pu, pu in the finite difference as well as finite element 
methods in the presence of discontinuities. The implementation of the finite element method 
has been done according to the directive proposed in Reference 10 and does not present any 
difficulty, more so when the elements are continuous and of low degree. 
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